마이클 닐슨 2015 "신경망과 딥러닝"
(마이클 닐슨 2015)
Neural Networks and Deep Learning
마이클 닐슨 and 아이작 추앙 2023 "양자계산과 양자정보" 이승준
(마이클 닐슨 and 아이작 추앙 2023)
Quantum Computation and Quantum Information: 10th Anniversary Edition
책소개
양자계산과 양자정보의 바이블로 불리는 이 책은 명저로 평가받으며 이 분야에서 최고의 교재로 자리 잡고 있다. 출간된 지 22년이 지났어도 1990년대 양자 컴퓨팅 격동기의 지식이 고스란히 집약돼 있다. 그리고 현재의 기술이 그 지식에 바탕을 두고 있으므로 지금까지도 책의 가치를 인정받고 있다. 풍부한 그림과 연습 문제가 수록돼 있어 해당 주제의 과정을 섭렵하기에 좋으며 물리학, 컴퓨터 과학, 수학, 전기공학 분야 등의 고급 대학생에서부터 연구자에 이르기까지 흥미를 갖고 읽을 만한 책이다.
목차
1부. 기본 개념
1장. 소개와 개요 __1.1 전체적 관점 __1.1.1 양자계산 및 양자정보의 역사 __1.1.2 향후 방향 __1.2 양자비트 __1.2.1 다수 큐비트 __1.3 양자계산 __1.3.1 단일 큐비트 게이트 __1.3.2 다수 큐비트 게이트 __1.3.3 계산기저 이외의 기저에서의 측정 __1.3.4 양자회로 __1.3.5 큐비트 복사 회로? __1.3.6 예: 벨 상태 __1.3.7 예: 양자 텔레포테이션 __1.4 양자 알고리듬 __1.4.1 양자 컴퓨터에서의 고전 계산 __1.4.2 양자 병렬성 __1.4.3 도이치 알고리듬 __1.4.4 도이치-조사 알고리듬 __1.4.5 양자 알고리듬 요약 __1.5 실험적 양자정보 처리 __1.5.1 슈테른-게를라흐 실험 __1.5.2 실제적인 양자정보 처리에 대한 전망 __1.6 양자정보 __1.6.1 양자정보이론: 예제 문제 __1.6.2 더 넓은 맥락에서의 양자정보 __역사와 추가자료
2장. 양자역학 입문 __2.1 선형대수 __2.1.1 기저와 선형독립 __2.1.2 선형연산자와 행렬 __2.1.3 파울리 행렬 __2.1.4 내적 __2.1.5 고유벡터와 고윳값 __2.1.6 수반 연산자와 에르미트 연산자 __2.1.7 텐서곱 __2.1.8 연산자 함수 __2.1.9 교환자와 반교환자 __2.1.10 극분해와 특이값 분해 __2.2 양자역학의 공준 __2.2.1 상태공간 __2.2.2 진화 __2.2.3 양자 측정 __2.2.4 양자상태 구별 __2.2.5 사영 측정 __2.2.6 POVM 측정 __2.2.7 위상 __2.2.8 복합계 __2.2.9 양자역학: 세계관 __2.3 응용: 초고밀도 코딩 __2.4 밀도연산자 __2.4.1 양자상태의 앙상블 __2.4.2 밀도연산자의 일반 특성 __2.4.3 환산밀도연산자 __2.5 슈미트 분해와 정화 __2.6 EPR과 벨 부등식 __역사와 추가자료
3장. 컴퓨터과학 입문 __3.1 계산모델 __3.1.1 튜링머신 __3.1.2 회로 __3.2 계산문제 분석 __3.2.1 계산 자원을 정량화하는 방법 __3.2.2 계산 복잡도 __3.2.3 결정 문제와 복잡도 클래스 P 및 NP __3.2.4 수많은 복잡도 클래스 __3.2.5 에너지와 계산 __3.3 컴퓨터과학에 대한 관점 __역사와 추가자료
2부. 양자계산
4장. 양자회로 __4.1 양자 알고리듬 __4.2 단일 큐비트 연산 __4.3 제어형 연산 __4.4 측정 __4.5 보편적 양자 게이트 __4.5.1 2레벨 유니타리 게이트는 보편적이다 __4.5.2 단일 큐비트와 CNOT 게이트는 보편적이다 __4.5.3 보편적 연산들의 이산집합 __4.5.4 임의의 유니타리 게이트를 근사시키는 것은 일반적으로 어렵다 __4.5.5 양자계산 복잡도 __4.6 양자회로 계산모델에 대한 요약 __4.7 양자계의 시뮬레이션 __4.7.1 시뮬레이션 작동 __4.7.2 양자 시뮬레이션 알고리듬 __4.7.3 설명 예제 __4.7.4 양자 시뮬레이션에 대한 관점 __역사와 추가자료
5장. 양자 푸리에 변환과 그 응용 __5.1 양자 푸리에 변환 __5.2 위상추정 __5.2.1 성능 및 요구사항 __5.3 응용: 위수 구하기와 인수분해 __5.3.1 응용: 위수 구하기 __5.3.2 응용: 인수분해 __5.4 양자 푸리에 변환의 일반적인 응용 __5.4.1 주기 구하기 __5.4.2 이산로그 __5.4.3 숨은 부분군 문제 __5.4.4 그 외의 양자 알고리듬? __역사와 추가자료
6장. 양자탐색 알고리듬 __6.1 양자탐색 알고리듬 __6.1.1 오라클 __6.1.2 절차 __6.1.3 기하학적 시각화 __6.1.4 성능 __6.2 양자 시뮬레이션으로서의 양자탐색 __6.3 양자 카운팅 __6.4 NP-완비 문제 해결 속도 향상 __6.5 비정형 데이터베이스의 양자탐색 __6.6 탐색 알고리듬의 최적성 __6.7 블랙박스 알고리듬 한계 __역사와 추가자료
7장. 양자 컴퓨터: 물리적 실현 __7.1 기본 원칙 __7.2 양자계산을 위한 조건 __7.2.1 양자정보의 표현 __7.2.2 유니타리 변환의 성능 __7.2.3 기준이 되는 초기상태에 대한 준비 __7.2.4 출력 결과 측정 __7.3 조화진동자 양자 컴퓨터 __7.3.1 물리장치 __7.3.2 해밀토니안 __7.3.3 양자계산 __7.3.4 단점 __7.4 광학 광자 양자 컴퓨터 __7.4.1 물리장치 __7.4.2 양자계산 __7.4.3 단점 __7.5 광학 공진기 양자전기역학 __7.5.1 물리장치 __7.5.2 해밀토니안 __7.5.3 단일광자 단일원자 흡수 및 굴절 __7.5.4 양자계산 __7.6 이온트랩 __7.6.1 물리장치 __7.6.2 해밀토니안 __7.6.3 양자계산 __7.6.4 실험 __7.7 핵자기공명 __7.7.1 물리장치 __7.7.2 해밀토니안 __7.7.3 양자계산 __7.7.4 실험 __7.8 그 외의 구현 체계 __역사와 추가자료
3부. 양자정보
8장. 양자 노이즈와 양자연산 __8.1 고전 노이즈와 마르코프 과정 __8.2 양자연산 __8.2.1 개요 __8.2.2 환경과 양자연산 __8.2.3 연산자-합 표현 __8.2.4 양자연산에 대한 공리적 접근법 __8.3 양자 노이즈 및 양자연산의 예 __8.3.1 대각합과 부분대각합 __8.3.2 단일 큐비트 양자연산의 기하학적 그림 __8.3.3 비트반전 채널과 위상반전 채널 __8.3.4 탈분극 채널 __8.3.5 진폭감쇠 __8.3.6 위상감쇠 __8.4 양자연산의 응용 __8.4.1 지배방정식 __8.4.2 양자 프로세스 단층촬영 __8.5 양자연산 형식체계의 한계 __역사와 추가자료
9장. 양자정보에 대한 거리측도 __9.1 고전정보에 대한 거리측도 __9.2 두 양자상태는 얼마나 가까울까? __9.2.1 대각합 거리 __9.2.2 충실도 __9.2.3 거리측도 간의 관계 __9.3 양자채널은 정보를 얼마나 잘 보존할까? __역사와 추가자료
10장. 양자 오류정정 __10.1 소개 __10.1.1 3큐비트 비트반전 코드 __10.1.2 3큐비트 위상반전 코드 __10.2 쇼어 코드 __10.3 양자 오류정정 이론 __10.3.1 오류 이산화 __10.3.2 독립적 오류 모델 __10.3.3 퇴화 코드 __10.3.4 양자 해밍경계 __10.4 양자 코드 제작 __10.4.1 고전 선형 코드 __10.4.2 칼더뱅크-쇼어-스테인 코드 __10.5 안정자 코드 __10.5.1 안정자 형식체계 __10.5.2 유니타리 게이트와 안정자 형식체계 __10.5.3 안정자 형식체계에서의 측정 __10.5.4 고테스만-닐 정리 __10.5.5 안정자 코드 제작 __10.5.6 예제 __10.5.7 안정자 코드의 표준형 __10.5.8 인코딩, 디코딩, 정정을 위한 양자회로 __10.6 결함허용 양자계산 __10.6.1 결함허용: 전체 윤곽 __10.6.2 결함허용 양자 논리 __10.6.3 결함허용 측정 __10.6.4 탄력적인 양자계산의 요소 __역사와 추가자료
11장. 엔트로피와 정보 __11.1 섀넌 엔트로피 __11.2 엔트로피의 기본 특성 __11.2.1 2진 엔트로피 __11.2.2 상대 엔트로피 __11.2.3 조건부 엔트로피와 상호정보 __11.2.4 데이터 처리 부등식 __11.3 폰 노이만 엔트로피 __11.3.1 양자 상대 엔트로피 __11.3.2 엔트로피의 기본 특성 __11.3.3 측정과 엔트로피 __11.3.4 준가법성 __11.3.5 엔트로피의 오목성 __11.3.6 양자상태 혼합의 엔트로피 __11.4 강한 준가법성 __11.4.1 강한 준가법성의 증명 __11.4.2 강한 준가법성: 기초 응용 __역사와 추가자료
12장. 양자정보이론 __12.1 양자상태 구별과 접근가능 정보 __12.1.1 홀레보 경계 __12.1.2 홀레보 경계의 적용 예 __12.2 데이터 압축 __12.2.1 섀넌의 무노이즈 채널 코딩 정리 __12.2.2 슈마허의 양자 무노이즈 채널 코딩 정리 __12.3 노이즈 양자채널에서의 고전정보 __12.3.1 노이즈 고전채널에서의 통신 __12.3.2 노이즈 양자채널을 통한 통신 __12.4 노이즈 양자채널에서의 양자정보 __12.4.1 엔트로피 교환과 양자 파노 부등식 __12.4.2 양자 데이터 처리 부등식 __12.4.3 양자 싱글톤 경계 __12.4.4 양자 오류정정, 냉동, 맥스웰의 도깨비 __12.5 물리적 자원으로서의 얽힘 __12.5.1 양분 순수상태 얽힘에 대한 변환 __12.5.2 얽힘 증류와 얽힘 희석 __12.5.3 얽힘 증류와 양자 오류정정 __12.6 양자 암호학 __12.6.1 개인 키 암호기법 __12.6.2 비밀성 증폭과 정보조정 __12.6.3 양자 키 분배 __12.6.4 비밀성과 결맞음 정보 __12.6.5 양자 키 분배 보안 __역사와 추가자료
부록 A1. 기본적인 확률론에 대한 참고사항 부록 A2. 군론 부록 A3. 솔로베이-키타예프 정리 부록 A4. 정수론 부록 A5. 공개 키 암호기법과 RSA 암호체계 부록 A6. 리브 정리 증명
출판사 리뷰
◈ 이 책의 구성 ◈
구체적인 내용을 먼저 소개한 뒤에 좀 더 일반적인 내용을 설명하는 방식으로, 양자정보보다 양자계산을 먼저 알아볼 것이다. 구체적인 양자 오류정정 코드를 먼저 다룬 뒤에 좀 더 일반적인 양자정보이론의 결과들을 설명한다. 그리고 책 전반에 걸쳐서 예제를 먼저 소개한 후, 일반적인 이론을 전개하고자 시도할 것이다.
1부에서는 양자계산 및 양자정보 분야의 주요 아이디어와 결과에 대한 전반적인 개요를 다루고 양자계산 및 양자정보를 깊이 있게 이해하는 데 필요한 컴퓨터 과학, 수학, 물리학의 배경지식으로 나아간다. 1장은 이 분야의 역사적 발전과 근본적인 개념을 알아보는 개론 장이며 주요 미해결 문제를 언급한다. 여기 지식은 컴퓨터 과학이나 물리학 배경 없이도 알 수 있게 구성했다. 좀 더 자세히 알 수 있는 배경지식은 2장과 3장에 다루며, 양자역학과 컴퓨터 과학의 기본 개념을 깊이 있게 설명한다. 자신의 지식 정도에 따라 1부의 각 장을 집중적으로 봐도 되고, 나중에 양자역학 및 컴퓨터 과학의 기본 지식에 미흡한 점이 있을 때 다시 1장에서 3장을 들춰봐도 좋다.
2부에서는 양자계산에 관해 자세히 설명한다. 4장에서는 양자계산을 수행하는 데 필요한 근본 요소에 대해 설명하고 좀 더 정교한 양자계산 애플리케이션을 개발하는 데 사용할 수 있는 기초 연산을 많이 제시한다. 5장과 6장에서는 현재 2개의 근본 알고리듬으로 알려진 양자 푸리에 변환과 양자탐색 알고리듬에 대해 기술한다. 5장에서는 인수분해 및 이산대수 문제를 해결하기 위해 양자 푸리에 변환을 사용하는 방법과 이들 결과가 암호 기법에 끼친 중요성에 대해서도 설명한다. 7장에서는 실험실에서 성공적으로 입증된 몇 가지 실현 사례를 사용해 양자 컴퓨터의 물리적 구현을 위한 일반적인 설계 원칙과 기준을 설명한다.
3부는 양자정보에 관한 것이다. 양자정보란 무엇인지, 양자상태를 사용해 어떻게 정보를 표현하고 전달하는지, 양자정보 및 고전정보의 손상을 어떻게 묘사하고 처리하는지 다룬다. 8장에서는 현실적인 양자정보 처리를 이해하는 데 필요한 양자 노이즈의 특성 그리고 양자 노이즈를 이해하기 위한 강력한 수학 도구인 양자연산 형식체계에 관해 설명한다. 9장에서는 양자정보에 대한 거리측도(distance measure)를 설명하는데 이는 양자정보의 두 항목이 유사하다고 말하는 것이 무엇을 의미하는지 양적으로 정밀하게 알려준다. 10장에서는 양자 오류정정 코드에 대해 설명하는데 이 코드를 사용해 노이즈 영향으로부터 양자계산을 보호할 수 있다. 10장의 중요한 성과는 임계값 정리(threshold theorem)인데, 이 정리는 현실적인 노이즈 모델의 경우 노이즈는 원칙적으로 양자계산에 심각한 방해가 되지 않는다는 것을 보여준다. 11장에서는 엔트로피의 기본정보이론 개념을 소개하며 고전정보이론과 양자정보이론 양쪽의 많은 엔트로피 특성을 설명한다. 마지막으로 12장에서는 양자상태와 양자통신 채널의 정보 전달 특성에 대해 논의하며, 고전정보 및 양자정보를 전송할 때와 비밀 정보를 전송할 때 시스템이 지닐 수 있는 이상하고 흥미로운 특성을 자세히 설명한다.
많은 확인문제와 연습문제가 포함하고 있다. 확인문제는 기본 지식을 잘 이해하게 하며 본문 중에 나온다. 짧은 시간 내에 풀 수 있을 것이다. 연습문제는 각 장의 끝에 나오며 본문에서 충분히 다루지 않은 새롭고 흥미로운 지식을 소개한다. 연습문제는 종종 여러 부분으로 나누어져 있으며, 어느 정도 깊이 있는 사고력을 요한다. 어떤 문제는 이 책이 출판될 당시 미해결 상태였다. 이런 문제에 대해서는 언급해놓았다.
부록 1에서는 기본 정의, 표기법 그리고 기본적인 확률론의 결과를 알아본다. 여기 자료는 독자에게 익숙할 것이며 쉽게 참조할 수 있게 했다. 마찬가지로 부록 2에서는 군론의 기본 개념들을 알아보는데 주로 편의상 포함시킨 것이다.
부록 3에는 양자계산에 있어서 중요 결과인 솔로베이-키타예프(Solovay-Kitaev) 정리에 대한 증명을 넣었는데 이 증명으로 양자 게이트의 유한집합을 사용해 임의의 양자 게이트를 빠르게 근사시킨다는 것을 알 수 있다.
부록 4에서는 인수분해 및 이산대수에 관한 양자 알고리듬과 RSA 암호체계를 이해하는 데 필요한 정수론의 기초 자료를 알아보고 부록 5에서는 그 암호체계 자체를 살펴본다.
부록 6에서는 리브(Lieb) 정리를 알아보는데, 이 정리는 양자계산 및 양자정보에 있어서 가장 중요한 결과 중 하나이며 유명한 강한 준가법성 부등식(strong subadditivity inequality)과 같은 중요 엔트로피 부등식의 선구자 역할을 했다. 솔로베이-키타예프 정리와 리브 정리에 관한 증명은 아주 길어서 본문과 별개로 취급하는 게 낫겠다고 느꼈다.
◈ 지은이의 말 ◈
이 책에서는 양자계산 및 양자정보 분야의 주요 아이디어와 기법을 소개한다. 이 분야가 빠르게 발전하는 데다가 여러 학문이 관련돼 있기 때문에 처음 입문한 이들은 이 분야의 중요 기술과 결과에 대해 전체적인 윤곽을 잡기가 어려웠다. 따라서 이 책의 목적은 두 가지다. 첫째, 양자계산 및 양자정보를 이해하는 데 필요한 컴퓨터 과학, 수학, 물리학의 배경지식을 소개한다. 이는 3가지 분야 중 하나 이상에서 대학원 초년생과 그 이상의 배경을 가진 독자가 이해할 수 있는 수준으로 진행된다. 가장 중요한 사항은 수학에 능숙해야 하고 양자계산 및 양자정보에 대해 배우려는 의지가 있어야 한다. 이 책의 두 번째 목적은 양자계산 및 양자정보의 핵심 결과를 세부적으로 발전시키는 것이다. 독자는 철저한 학습을 통해 일반 교육의 일부분으로써, 또는 양자계산 및 양자정보에 대한 독자적 연구의 준비로써 이 흥미진진한 분야의 근본적인 도구와 결과에 대한 실질적 지식을 발전시켜야 한다.
◈ 옮긴이의 말 ◈
이 책은 2000년 처음 출간되고 2010년에 10주년 기념판으로 재발간됐다. 이제 출간된 지 22년 만에 이 번역판을 국내 독자에게 선보이게 됐다. 22년이 지났다고 하면 하루하루 새로운 정보와 신기술이 쏟아지는 현재의 상황에서는 구식으로 느끼기에 충분하다. 하지만 이 책은 여전히 양자계산 및 양자정보 분야의 바이블로 대우받고 있다. 세월이 많이 흘렀어도 이 책의 가치가 떨어지지 않는 이유를 알려면 이 책이 나온 시기의 상황을 살필 필요가 있다.
양자역학이 1920년대부터 1930년대에 걸쳐 격동의 세월을 보냈다면 양자 컴퓨팅은 1990년대에 격동기를 겪었다. 1993년 IBM에 근무하던 찰스 베넷 박사 그룹이 얽힘 상태를 이용해 양자 텔레포테이션 개념을 이론적으로 확립했다. 1994년에는 피터 쇼어 박사가 ‘쇼어 알고리듬’을 발표해 사회에 강한 충격을 주었다. 현재 우리가 사용하는 RSA 암호 체계가 결코 안전하지 않다는 것을 보여준 큰 사건이었다. 또한 쇼어 박사는 같은 해에 오류 증후군 측정 방식을 통해 얽힘 상태를 이용하면 양자 컴퓨팅에서 오류정정이 가능하다는 것도 밝혀냈다.
1996년에는 벨 연구소의 연구원이었던 롭 그로버가 ‘그로버 알고리듬’을 발표해 탐색 문제의 시간을 크게 단축시키면서 양자 컴퓨터가 고전 컴퓨터를 넘어설 수 있다는 확신을 줬다. 1997년에는 인스부르크대학교의 차일링거 교수 그룹이 4년 전 이론으로 나왔던 양자 텔레포테이션 개념을 실험으로 구현해냈다. 이와 같은 격동기를 거치며 이 책이 집필된 것이므로 그때까지의 생생한 지식들을 담아낸 것이라 볼 수 있다. 현재의 양자 컴퓨팅 기술은 바로 그 지식들을 딛고 올라선 것이다. 따라서 세월이 지났어도 이 책은 구식이 아니라 현재의 기술을 이해할 수 있는 기본서가 되는 셈이다.
2021년 11월에 IBM이 127큐비트 ‘이글(Eagle)’ CPU를 개발했다며 양자 컴퓨터에 새 이정표를 세웠다는 기사가 인터넷에 올라왔다. 물론 이 큐비트 수는 물리적인 큐비트 수일 뿐, 논리 큐비트 수는 아니라서 실제 정보 처리량은 훨씬 줄어든다. 예를 들면 1개 큐비트의 정보를 처리할 때 오류정정을 위해 9개의 큐비트를 사용한다면 127큐비트 양자 컴퓨터라도 실제 정보 처리량은 대략 12큐비트 양자 컴퓨터의 성능을 발휘한 게 된다. 노이즈가 심하거나 더욱 정확성을 기하려면 오류정정에 더 많은 큐비트를 할당해야 하므로 기대한 것보다 훨씬 못 미치는 성능을 낼 수도 있다는 얘기다. 이는 앞으로도 개선의 여지가 크고 그 발전 가능성은 무궁무진하다고 볼 수 있다. 이런 시기에 양자 컴퓨팅의 명저를 번역할 수 있어서 무척 기쁘다.
출간 22주년 한국어 기념판격인 이 번역서에는 그동안 원서에서 보고된 오류에 대한 정정 사항을 모두 적용해 넣었다. 번역 용어는 이 책을 보는 독자들이 대개 영문 원서나 영문 논문을 참조할 것이므로 영문 용어를 쉽게 유추할 수 있거나 그대로의 용어를 선택하고 각주에 그에 대한 교재 용어를 추가했다. 한 예를 들자면, code와 encoding에 대해 정보이론 교재에서는 ‘부호’와 ‘부호화’라고 번역하지만 이 책에서는 ‘코딩’과 ‘인코딩’으로 원어 그대로의 용어를 사용했다. 각 장의 ‘역사와 추가자료’ 절에는 역사와 함께 참고자료를 체계적으로 잘 정리해둬 독자들에게는 보물을 얻은 느낌을 주리라 믿는다. 역자는 ‘역사와 추가자료’ 절만으로도 행복한 느낌을 받는다.
아무쪼록 독자가 이 책을 바탕으로 우리나라의 양자 컴퓨팅 발전에 크게 기여하기를 바란다. 접어보기 추천평 “현재 “마이크와 아이크(두 저자의 애칭)”의 책은 다른 모든 책과 비교되는 양자 컴퓨팅 교재가 됐다. 이 분야의 어떠한 책도 실험 구현에서 복잡도 클래스에 이르기까지 그리고 처치-튜링 논제의 철학적 정당화에서 브라/켓 다루기의 핵심에 이르기까지 그 범위를 완전히 다루지 않는다. 내 책상 위에는 귀퉁이가 닳은 이 책이 놓여 있다. 대각합 거리(trace distance)와 충실도(fidelity)에 대한 부분만으로도 내게는 책 가격의 몇 배나 되는 가치가 있다.”
- 스콧 애론슨 (Scott Aaronson, 매사추세츠공과대학교)
“양자정보 처리는 이론 및 실험 양자물리학, 컴퓨터 과학, 수학, 양자공학 그리고 최근에는 양자계측에 이르기까지 여러 학문이 관련된 거대한 분야가 됐다. 마이클 닐슨과 아이작 추앙이 집필한 이 책은 여러 면에서 한 시대의 획을 그었다. 즉, 기초 과학에 있어서 광범위하면서도 깊은 이해의 길을 닦았고 현재 성장하고 있는 커뮤니티에서 널리 사용되는 공통 언어를 소개하면서 10년 동안 이 분야의 표준서가 됐다. 이 분야가 빠르게 발전해왔지만 10년이 지난 후에도 이 책은 학생과 학자 모두에게 이 분야의 기본 입문서 역할을 하고 있으므로 이 10주년 기념판은 장래의 베스트셀러로 남을 것이다. 이 책에는 양자계산 및 양자정보 처리의 기초가 잘 정리돼 있으며, 양자정보 처리의 바탕이 된 실험 기술에 대한 개요도 나와 있다. 이 분야의 급속한 진전에 비춰 이 책은 여러 학문이 관련된 고도의 연구 분야에 들어서는 사람들에게 계속해서 가치가 있을 것이며, 그 분야에서 성장하는 사람들을 위한 참고서가 될 것이다. 이 책은 훌륭한 책으로 잘 쓰여졌고 훌륭한 평가를 받으며, 실제로 현장의 모든 사람에게 필독서이기도 하다.”
- 라이너 블랫 (Rainer Blatt, 인스부르크대학교)
“닐슨과 추앙의 책은 이 글을 쓰는 와중에도 평소와 다름없이 내 옆에 놓여 있다. 마이크와 아이크가 다룬 자료는 여전히 잠재력이 큰 분야다. 다른 연구자가 내게 양자정보 과학의 중요한 점에 대해 명확하게 설명해 달라고 하면 나는 이 책 속에 그 내용이 있다는 것을 기억하고는 안도의 한숨을 내쉰다(내가 할 일은 쉽다. 그저 그 내용을 전달하기만 하면 된다).”
- 데이비드 디빈센조 (David DiVincenzo, IBM T. J. 왓슨 연구 센터)
“양자정보 과학에 대해 알고 싶은 것이 있거나 생각나게 하는 것이 있다면, 아이크와 마이크가 집필한 이 종합 개론서를 살펴보기만 하면 된다. 여러분이 전문가든 학생든 평범한 독자든 유용하고 잘 제시된 정보를 담은 이 보물상자를 잘 활용하기를 바란다.”
- 아르투르 에커트 (Artur Ekert, 옥스퍼드대학교 수학 연구소)
“『해리 포터』를 읽은 아이라면 바른 말을 하거나 옳은 일을 할 때 멋진 일이 일어난다고 믿는다. 그러나 어른도 그렇게 생각할까? 마찬가지로 1990년대 초반에 양자계산 및 양자정보가 나올 때까지는 이것들을 믿는 이들이 거의 없었다. 양자 컴퓨터는 현 세기에 존재하는 마법사의 돌이며 닐슨과 추앙 책은 우리의 기본 마법서가 됐다. 출간 이후 10년이 지난 지금까지도 이 분야의 기본서로 자리 잡고 있다. 사물에 의문을 품으면 놀라운 사실을 알게 되지만 그보다 먼저 사물의 언어를 이해해야 한다. 그 이후로 닐슨과 추앙의 책처럼 양자이론을 가능케 하는 언어를 가르치는 책은 없었다(이전에도 없었지만 말이다).”
- 크리스 푹스 (Chris Fuchs, 페리미터 이론 물리학 연구소)
“닐슨과 추앙의 책은 양자정보 분야의 바이블이다. 10년 전에 나왔고 그 분야가 엄청나게 바뀌었어도 이 책은 여전히 이 분야의 중요한 개념 대부분을 다루고 있다.”
- 롭 그로버 (Lov Grover, 벨 연구소)
”일반적으로 “마이크와 아이크”로 언급되는 이 책은 양자정보 처리의 배경 정보를 제공하는 아주 중요한 자원이 된다. 수학을 꺼리는 실험주의자로서 나는 양자역학의 일반 배경을 담고 있다는 사실에 특히 감사한다. 책의 어느 부분을 펴도 논의되는 기본 아이디어를 쉽게 파악할 수 있다. 내게는 여전히 이 분야의 “확실한” 책이다.”
- 데이비드 와인랜드 (David Wineland, 콜로라도주 볼더 시에 있는 미국 표준기술 연구소)
”추앙과 닐슨은 양자계산에 대해 최초로 포괄적인 연구를 수행했다. 이 주제를 확실히 이해하려면 물리학, 컴퓨터과학, 수학 내에 있는 근본적이고 다양한 아이디어를 많이 통합해야 한다. 이 교재가 나오기 전까지는 필수 자료를 정리하고 완전히 익히기가 어려웠다. 우리의 우주는 정보 처리에 있어서 고유 기능과 한계를 갖고 있다. 그것이 무엇인지에 따라 궁극적으로 기술 과정이 결정되고 근본적인 물리 이론을 찾기 위한 우리의 노력이 구체화될 것이다. 이 책은 관련 분야의 어떠한 과학자나 대학원생이라도 토론에 참여할 수 있는 멋진 길을 열어준다.”
- 마이클 프리드먼 (Michael Freedman, 마이크로소프트, 필즈 메달리스트)
마이클 닐슨 "Michael’s Notebook"
(마이클 닐슨 n.d.-b)
마이클 닐슨 "Michael Nielsen"
(마이클 닐슨 n.d.-a)
마이클 닐슨 2013 "Lisp as the Maxwell’s equations of software - tiddlylisp"
(마이클 닐슨 2013)
마이클 닐슨 "mnielsen/tiddlylisp: A toy Lisp interpreter and simple eval function"
(마이클 닐슨 n.d.-c)
- 1979 "LISP 1.5 programmer’s manual"
(존 매카시 1979)
Related-Notes
References
마이클 닐슨. 2013. “Lisp as the Maxwell’s Equations of Software - Tiddlylisp.” 2013. https://michaelnielsen.org/ddi/lisp-as-the-maxwells-equations-of-software/.
———. 2015. 신경망과 딥러닝. Determination Press. http://neuralnetworksanddeeplearning.com.
———. n.d.-a. “Michael Nielsen.” Accessed November 15, 2024. https://michaelnielsen.org/.
———. n.d.-b. “Michael’s Notebook.” Accessed November 15, 2024. https://michaelnotebook.com/.
———. n.d.-c. “Mnielsen/Tiddlylisp: A Toy Lisp Interpreter and Simple Eval Function.” Accessed November 15, 2024. https://github.com/mnielsen/tiddlylisp.
마이클 닐슨, and 아이작 추앙. 2023. 양자계산과 양자정보. Translated by 이승준. https://www.yes24.com/Product/Goods/113451876.
존 매카시, ed. 1979. LISP 1.5 Programmer’s Manual. 2. ed. Cambridge, Mass: MIT Pr.