BIBLIOGRAPHY

โ€œ์‘์šฉ์ˆ˜ํ•™ Applied Mathematics.โ€ 2025. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Applied_mathematics&oldid=1282191387.

โ€œ์ˆ˜ํ•™ ๋ถ„์•ผ Areas of Mathematics.โ€ 2025. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Mathematics&oldid=1287448987#Areas_of_mathematics.

โ€œ์ˆ˜ํ•™์˜ ์—ญ์‚ฌ History of Mathematics.โ€ 2025. In Wikipedia. https://en.wikipedia.org/w/index.php?title=History_of_mathematics&oldid=1286346018.

โ€œ์ˆ˜ํ•™ Mathematics.โ€ 2024. ๋‚˜๋ฌด์œ„ํ‚ค. December 3, 2024. https://namu.wiki/w/%EC%88%98%ED%95%99.

โ€œ์ˆ˜ํ•™ Mathematics.โ€ 2025. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Mathematics&oldid=1287448987.

History

  • [2025-04-29 Tue 10:29] History and Foundations of Mathematics

History

์ˆ˜ํ•™ Mathematics

  • (โ€œ์ˆ˜ํ•™ Mathematicsโ€ 2025)
  • (โ€œ์ˆ˜ํ•™ Mathematicsโ€ 2024) 2025

Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature orโ€”in modern mathematicsโ€”purely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andโ€”in case of abstraction from natureโ€”some basic properties that are considered true starting points of the theory under consideration. Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics) but often later find practical applications. Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclidโ€™s Elements. Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra and infinitesimal calculus were introduced as new fields. Since then, the interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method, which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics.

์ˆ˜ํ•™์€ ๊ฒฝํ—˜์  ๊ณผํ•™๊ณผ ์ˆ˜ํ•™ ์ž์ฒด์˜ ํ•„์š”์— ์˜ํ•ด ๊ฐœ๋ฐœ๋˜๊ณ  ์ฆ๋ช…๋œ ๋ฐฉ๋ฒ•, ์ด๋ก , ์ •๋ฆฌ๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ณ  ์ •๋ฆฌํ•˜๋Š” ํ•™๋ฌธ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ์ˆ˜ํ•™์—๋Š” ์ˆ˜๋ก (์ˆ˜์— ๋Œ€ํ•œ ํ•™๋ฌธ), ๋Œ€์ˆ˜(๊ณต์‹๊ณผ ๊ด€๋ จ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ํ•™๋ฌธ), ๊ธฐํ•˜ํ•™(๋„ํ˜•๊ณผ ์ด๋ฅผ ํฌํ•จํ•˜๋Š” ๊ณต๊ฐ„์— ๋Œ€ํ•œ ํ•™๋ฌธ), ํ•ด์„(์—ฐ์†์ ์ธ ๋ณ€ํ™”์— ๋Œ€ํ•œ ํ•™๋ฌธ), ์ง‘ํ•ฉ๋ก (ํ˜„์žฌ ๋ชจ๋“  ์ˆ˜ํ•™์˜ ๊ธฐ์ดˆ๋กœ ์‚ฌ์šฉ๋˜๋Š”) ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ž์—ฐ์—์„œ ์ถ”์ƒํ™”ํ•˜๊ฑฐ๋‚˜ ํ˜„๋Œ€ ์ˆ˜ํ•™์—์„œ๋Š” ๊ณต๋ฆฌ๋ผ๊ณ  ํ•˜๋Š” ํŠน์ • ์†์„ฑ์„ ๊ฐ–๋„๋ก ๊ทœ์ •๋œ ์ˆœ์ˆ˜ ์ถ”์ƒ ์‹ค์ฒด๋กœ ๊ตฌ์„ฑ๋œ ์ถ”์ƒ์ ์ธ ๋Œ€์ƒ์„ ๊ธฐ์ˆ ํ•˜๊ณ  ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ˆœ์ˆ˜ํ•œ ์ด์„ฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์ƒ์˜ ์†์„ฑ์„ ์ฆ๋ช…ํ•˜๋ฉฐ, ์ฆ๋ช…์€ ์ด๋ฏธ ํ™•๋ฆฝ๋œ ๊ฒฐ๊ณผ์— ์—ฐ์—ญ์  ๊ทœ์น™์„ ์—ฐ์†์ ์œผ๋กœ ์ ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์—๋Š” ์ด์ „์— ์ฆ๋ช…๋œ ์ •๋ฆฌ, ๊ณต๋ฆฌ, ๊ทธ๋ฆฌ๊ณ  ์ž์—ฐ์—์„œ ์ถ”์ƒํ™”๋œ ๊ฒฝ์šฐ ๊ณ ๋ ค ์ค‘์ธ ์ด๋ก ์˜ ์ง„์ •ํ•œ ์ถœ๋ฐœ์ ์œผ๋กœ ๊ฐ„์ฃผ๋˜๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ธฐ๋ณธ ์†์„ฑ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ž์—ฐ๊ณผํ•™, ๊ณตํ•™, ์˜ํ•™, ๊ธˆ์œต, ์ปดํ“จํ„ฐ ๊ณผํ•™ ๋ฐ ์‚ฌํšŒ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ํ˜„์ƒ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜์ง€๋งŒ ์ˆ˜ํ•™์˜ ๊ธฐ๋ณธ ์ง„๋ฆฌ๋Š” ์–ด๋–ค ๊ณผํ•™์  ์‹คํ—˜๊ณผ๋„ ๋ฌด๊ด€ํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„ํ•™์ด๋‚˜ ๊ฒŒ์ž„ ์ด๋ก ๊ณผ ๊ฐ™์€ ์ˆ˜ํ•™์˜ ์ผ๋ถ€ ์˜์—ญ์€ ์‘์šฉ ๋ถ„์•ผ์™€ ๋ฐ€์ ‘ํ•œ ์ƒ๊ด€๊ด€๊ณ„ ์†์—์„œ ๋ฐœ์ „ํ•˜๋ฉฐ ์‘์šฉ ์ˆ˜ํ•™์œผ๋กœ ๋ถ„๋ฅ˜๋˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์˜์—ญ์€ ์‘์šฉ ๋ถ„์•ผ์™€ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ(๋”ฐ๋ผ์„œ ์ˆœ์ˆ˜ ์ˆ˜ํ•™์ด๋ผ๊ณ ๋„ ํ•จ) ๋‚˜์ค‘์— ์‹ค์šฉ์ ์ธ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ฐพ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์—ญ์‚ฌ์ ์œผ๋กœ ์ฆ๋ช…์ด๋ผ๋Š” ๊ฐœ๋…๊ณผ ๊ทธ์™€ ๊ด€๋ จ๋œ ์ˆ˜ํ•™์  ์—„๋ฐ€์„ฑ์€ ๊ทธ๋ฆฌ์Šค ์ˆ˜ํ•™, ํŠนํžˆ ์œ ํด๋ฆฌ๋“œ ์›๋ก ์—์„œ ์ฒ˜์Œ ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™์ด ์‹œ์ž‘๋œ ์ด๋ž˜ ์ˆ˜ํ•™์€ ์ฃผ๋กœ ๊ธฐํ•˜ํ•™๊ณผ ์‚ฐ์ˆ (์ž์—ฐ์ˆ˜์™€ ๋ถ„์ˆ˜์˜ ์กฐ์ž‘)๋กœ ๋‚˜๋‰˜์—ˆ์œผ๋ฉฐ, 16~17์„ธ๊ธฐ์— ๋Œ€์ˆ˜ํ•™๊ณผ ๋ฌดํ•œ๋Œ€ ๋ฏธ์ ๋ถ„์ด ์ƒˆ๋กœ์šด ๋ถ„์•ผ๋กœ ๋„์ž…๋˜๊ธฐ ์ „๊นŒ์ง€ ์ˆ˜ํ•™์€ ์ฃผ๋กœ ๊ธฐํ•˜ํ•™๊ณผ ์‚ฐ์ˆ ๋กœ ๋‚˜๋‰˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„๋กœ ์ˆ˜ํ•™์  ํ˜์‹ ๊ณผ ๊ณผํ•™์  ๋ฐœ๊ฒฌ์˜ ์ƒํ˜ธ ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋‘ ๋ถ„์•ผ์˜ ๋ฐœ์ „์ด ์ƒ๊ด€๊ด€๊ณ„์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. 19์„ธ๊ธฐ ๋ง, ์ˆ˜ํ•™์˜ ๊ทผ๋ณธ์ ์ธ ์œ„๊ธฐ๋Š” ๊ณต๋ฆฌ์ฃผ์˜์  ๋ฐฉ๋ฒ•์˜ ์ฒด๊ณ„ํ™”๋กœ ์ด์–ด์กŒ๊ณ , ์ด๋Š” ์ˆ˜ํ•™ ์˜์—ญ๊ณผ ๊ทธ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ€๋ฅผ ์˜ˆ๊ณ ํ–ˆ์Šต๋‹ˆ๋‹ค. ํ˜„๋Œ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ ๋ถ„๋ฅ˜์—๋Š” 60๊ฐœ ์ด์ƒ์˜ 1๊ธ‰ ์ˆ˜ํ•™ ์˜์—ญ์ด ๋‚˜์—ด๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๋ฉ”ํƒ€

Division II. Mathematics

[For Part Ten headnote see page 479.]

์„น์…˜ II์˜ ์„ธ ์„น์…˜์—์„œ๋Š” ์ˆ˜ํ•™์˜ ์—ญ์‚ฌ์™€ ๊ธฐ์ดˆ, ์ˆ˜ํ•™์˜ ๋ถ„์•ผ, ์ˆ˜ํ•™์˜ ์‘์šฉ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์„น์…˜ 10/21์—์„œ๋Š” ๋จผ์ € ์ˆ˜ํ•™์˜ ์ผ๋ฐ˜์ ์ธ ์—ญ์‚ฌ, ์ˆ˜ํ•™์˜ ๋Œ€ํ‘œ์ ์ธ ๋น„ํ™•๋ฅ ์  ์˜์—ญ์˜ ๋ฐœ์ „, ํ™•๋ฅ ์  ์˜์—ญ์˜ ์—ญ์‚ฌ์  ๋ฐœ์ „์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ˆ˜ํ•™์˜ ๊ธฐ์ดˆ๋Š” ๊ณต๋ฆฌ์  ๋ฐฉ๋ฒ•, ์œ ์ „์  ๋ฐฉ๋ฒ•, 20์„ธ๊ธฐ ์ˆ˜ํ•™์˜ ๊ธฐ์ดˆ์— ๋Œ€ํ•œ ๊ฒฝ์Ÿ์  ๊ณต์‹ํ™”, ์ˆ˜ํ•™์˜ ๊ธฐ์ดˆ์— ๋Œ€ํ•œ ํ˜„์žฌ ์—ฐ๊ตฌ ๋“ฑ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

์ˆ˜ํ•™์˜ ํ•œ ๋ถ„์•ผ์ธ 10/22๊ณผ์—์„œ๋Š” ๋จผ์ € ์ง‘ํ•ฉ๋ก , ์‚ฐ์ˆ , ์ดˆ๋“ฑ ๋‹ค๋ณ€๋Ÿ‰ ๋Œ€์ˆ˜, ์„ ํ˜• ๋Œ€์ˆ˜ ๋ฐ ๋‹ค์„ ํ˜• ๋Œ€์ˆ˜, ๋™ํ˜• ๋Œ€์ˆ˜ ๋ฐ ๋ฒ”์šฉ ๋Œ€์ˆ˜ ๊ณผ๋ชฉ์„ ํฌํ•จํ•œ ๋Œ€์ˆ˜ ๊ตฌ์กฐ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด์–ด์„œ ์œ ํด๋ฆฌ๋“œ ๊ธฐํ•˜์™€ ๋น„์œ ํด๋ฆฌ๋“œ ๊ธฐํ•˜, ํˆฌ์˜ ๊ธฐํ•˜, ํ•ด์„ ๊ธฐํ•˜์™€ ์‚ผ๊ฐ ๊ธฐํ•˜, ๋ฏธ๋ถ„ ๊ธฐํ•˜, ๋Œ€์ˆ˜ ๊ธฐํ•˜๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ์ˆ˜ํ•™์  ๋ถ„์„์˜ ์„ธ๋ถ„ํ™”์ธ ์‹ค์ˆ˜ ํ•ด์„, ๋ณต์†Œ ํ•ด์„, ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹, ํ•จ์ˆ˜ ํ•ด์„, ํ‘ธ๋ฆฌ์— ํ•ด์„, ํ™•๋ฅ  ์ด๋ก , ๋ฒกํ„ฐ ๋ฐ ํ…์„œ ํ•ด์„์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ์กฐํ•ฉ๋ก ๊ณผ ์กฐํ•ฉ ๊ธฐํ•˜ํ•™, ์ •์ˆ˜๋ก ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ผ๋ฐ˜ ์œ„์ƒ์ˆ˜ํ•™, ์œ„์ƒ ๊ตฐ๊ณผ ๋ฏธ๋ถ„ ์œ„์ƒ์ˆ˜ํ•™, ๋Œ€์ˆ˜ ์œ„์ƒ์ˆ˜ํ•™ ๋“ฑ ์œ„์ƒ์ˆ˜ํ•™์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. 10/23์žฅ ์ˆ˜ํ•™์˜ ์‘์šฉ์—์„œ๋Š” ๋จผ์ € ๊ณ„์‚ฐ ๊ณผํ•™์œผ๋กœ์„œ์˜ ์ˆ˜ํ•™์„ ๋‹ค๋ฃฌ ๋‹ค์Œ ํ†ต๊ณ„, ์ˆ˜์น˜ ํ•ด์„, ์˜คํ† ๋งˆํƒ€์˜ ์ •์˜์™€ ์˜ˆ, ์˜คํ† ๋งˆํƒ€ ์ด๋ก ์˜ ๋ฐœ์ „, ์ตœ์ ํ™”์˜ ์ˆ˜ํ•™์  ์ด๋ก , ์ •๋ณด ์ด๋ก , ๋ฌผ๋ฆฌ ์ด๋ก ์˜ ์ˆ˜ํ•™์  ์ธก๋ฉด์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

1=10=2=1 โ€ #ํ”„๋กœํ”ผ๋””์•„#๋ฉ”ํƒ€์ง€์‹#์ˆ˜ํ•™: ยง์—ญ์‚ฌ ยง๊ธฐ๋ฐ˜/๊ธฐ์ดˆ

10/21. History and Foundations of Mathematics 483

1=10=2=2 โ€ #ํ”„๋กœํ”ผ๋””์•„#๋ฉ”ํƒ€์ง€์‹#์ˆ˜ํ•™: ยง๋ถ„์•ผ

10/22. Branches of Mathematics 485

1=10=2=3 โ€ #ํ”„๋กœํ”ผ๋””์•„#๋ฉ”ํƒ€์ง€์‹#์ˆ˜ํ•™: ยง์‘์šฉ/ํ™œ์šฉ

10/23. Applications of Mathematics 490

์ˆ˜ํ•™์˜ ์—ญ์‚ฌ History of mathematics

(โ€œ์ˆ˜ํ•™์˜ ์—ญ์‚ฌ History of Mathematicsโ€ 2025)

The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the field of astronomy to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt โ€“ Plimpton 322 (Babylonian c.\,2000 โ€“ 1900 BC), the Rhind Mathematical Papyrus (Egyptian c. 1800 BC) and the Moscow Mathematical Papyrus (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. The study of mathematics as a โ€œdemonstrative disciplineโ€ began in the 6th century BC with the Pythagoreans, who coined the term โ€œmathematicsโ€ from the ancient Greek ฮผฮฌฮธฮทฮผฮฑ (mathema), meaning โ€œsubject of instructionโ€. Greek mathematics greatly refined the methods (especially through the introduction of deductive reasoning and mathematical rigor in proofs) and expanded the subject matter of mathematics. The ancient Romans used applied mathematics in surveying, structural engineering, mechanical engineering, bookkeeping, creation of lunar and solar calendars, and even arts and crafts. Chinese mathematics made early contributions, including a place value system and the first use of negative numbers. The Hinduโ€“Arabic numeral system and the rules for the use of its operations, in use throughout the world today evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics through the work of Muแธฅammad ibn Mลซsฤ al-Khwฤrizmฤซ. Islamic mathematics, in turn, developed and expanded the mathematics known to these civilizations. Contemporaneous with but independent of these traditions were the mathematics developed by the Maya civilization of Mexico and Central America, where the concept of zero was given a standard symbol in Maya numerals. Many Greek and Arabic texts on mathematics were translated into Latin from the 12th century onward, leading to further development of mathematics in Medieval Europe. From ancient times through the Middle Ages, periods of mathematical discovery were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 15th century, new mathematical developments, interacting with new scientific discoveries, were made at an increasing pace that continues through the present day. This includes the groundbreaking work of both Isaac Newton and Gottfried Wilhelm Leibniz in the development of infinitesimal calculus during the course of the 17th century and following discoveries of German mathematicians like Carl Friedrich Gauss and David Hilbert.

์ˆ˜ํ•™์˜ ์—ญ์‚ฌ๋Š” ์ˆ˜ํ•™ ๋ฐœ๊ฒฌ์˜ ๊ธฐ์›๊ณผ ๊ณผ๊ฑฐ์˜ ์ˆ˜ํ•™์  ๋ฐฉ๋ฒ• ๋ฐ ํ‘œ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํ˜„๋Œ€์— ์ด๋ฅด๋Ÿฌ ์ง€์‹์ด ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™•์‚ฐ๋˜๊ธฐ ์ „์—๋Š” ์ƒˆ๋กœ์šด ์ˆ˜ํ•™์  ๋ฐœ์ „์— ๋Œ€ํ•œ ๊ธฐ๋ก์ด ๋ช‡๋ช‡ ์ง€์—ญ์—์„œ๋งŒ ๋ฐœ๊ฒฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์›์ „ 3000๋…„๋ถ€ํ„ฐ ๋ฉ”์†Œํฌํƒ€๋ฏธ์•„์˜ ์ˆ˜๋ฉ”๋ฅด, ์•„์นด๋“œ, ์•„์‹œ๋ฆฌ์•„ ๊ตญ๊ฐ€์™€ ๊ณ ๋Œ€ ์ด์ง‘ํŠธ, ๋ ˆ๋ฐ˜ํŠธ์˜ ์—๋ธ”๋ผ ๊ตญ๊ฐ€๋Š” ์กฐ์„ธ, ์ƒ์—…, ๋ฌด์—ญ, ๊ทธ๋ฆฌ๊ณ  ์ฒœ๋ฌธํ•™ ๋ถ„์•ผ์—์„œ ์‹œ๊ฐ„์„ ๊ธฐ๋กํ•˜๊ณ  ๋‹ฌ๋ ฅ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์‚ฐ์ˆ , ๋Œ€์ˆ˜, ๊ธฐํ•˜ํ•™์„ ์‚ฌ์šฉํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ€์žฅ ์˜ค๋ž˜๋œ ์ˆ˜ํ•™ ํ…์ŠคํŠธ๋Š” ๋ฉ”์†Œํฌํƒ€๋ฏธ์•„์™€ ์ด์ง‘ํŠธ์—์„œ ๋‚˜์˜จ ํ”Œ๋ฆผํ†ค 322(๊ธฐ์›์ „ 2000~1900๋…„ ๋ฐ”๋นŒ๋กœ๋‹ˆ์•„), ๋ฆฐ๋“œ ์ˆ˜ํ•™ ํŒŒํ”ผ๋ฃจ์Šค(๊ธฐ์›์ „ 1800๋…„ ์ด์ง‘ํŠธ), ๋ชจ์Šคํฌ๋ฐ” ์ˆ˜ํ•™ ํŒŒํ”ผ๋ฃจ์Šค(๊ธฐ์›์ „ 1890๋…„ ์ด์ง‘ํŠธ) ๋“ฑ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋“  ํ…์ŠคํŠธ์—๋Š” ์†Œ์œ„ ํ”ผํƒ€๊ณ ๋ผ์Šค์˜ ์‚ผ๊ฐํ˜•์ด ์–ธ๊ธ‰๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ์ถ”๋ก ์— ๋”ฐ๋ฅด๋ฉด ํ”ผํƒ€๊ณ ๋ผ์Šค ์ •๋ฆฌ๋Š” ๊ธฐ๋ณธ ์‚ฐ์ˆ ๊ณผ ๊ธฐํ•˜ํ•™ ๋‹ค์Œ์œผ๋กœ ๊ฐ€์žฅ ์˜ค๋ž˜๋˜๊ณ  ๋„๋ฆฌ ํผ์ง„ ์ˆ˜ํ•™์  ๋ฐœ์ „์ธ ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. โ€œ์‹ค์ฆ์  ํ•™๋ฌธโ€์œผ๋กœ์„œ์˜ ์ˆ˜ํ•™ ์—ฐ๊ตฌ๋Š” ๊ธฐ์›์ „ 6์„ธ๊ธฐ์— ๊ณ ๋Œ€ ๊ทธ๋ฆฌ์Šค์–ด ฮผฮฌฮธฮทฮผฮฑ(๋งˆํ…Œ๋งˆ)์—์„œ โ€œ์ˆ˜ํ•™โ€์ด๋ผ๋Š” ์šฉ์–ด๋ฅผ ๋งŒ๋“ค์–ด๋‚ธ ํ”ผํƒ€๊ณ ๋ผ์Šค์ธ๋“ค์— ์˜ํ•ด ์‹œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, โ€œ๊ฐ€๋ฅด์นจ์˜ ๋Œ€์ƒโ€์ด๋ผ๋Š” ๋œป์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ์Šค ์ˆ˜ํ•™์€ ํŠนํžˆ ์—ฐ์—ญ์  ์ถ”๋ก ๊ณผ ์ฆ๋ช…์— ์ˆ˜ํ•™์  ์—„๋ฐ€์„ฑ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ˆ˜ํ•™์˜ ๋ฐฉ๋ฒ•์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•˜๊ณ  ์ˆ˜ํ•™์˜ ์ฃผ์ œ๋ฅผ ํ™•์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ณ ๋Œ€ ๋กœ๋งˆ์ธ๋“ค์€ ์ธก๋Ÿ‰, ๊ตฌ์กฐ ๊ณตํ•™, ๊ธฐ๊ณ„ ๊ณตํ•™, ๋ถ€๊ธฐ, ์Œ๋ ฅ ๋ฐ ํƒœ์–‘๋ ฅ ์ œ์ž‘, ์‹ฌ์ง€์–ด ์˜ˆ์ˆ ๊ณผ ๊ณต์˜ˆ์—๊นŒ์ง€ ์‘์šฉ ์ˆ˜ํ•™์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ค‘๊ตญ ์ˆ˜ํ•™์€ ์ž๋ฆฟ๊ฐ’ ์ฒด๊ณ„์™€ ์Œ์ˆ˜์˜ ์ตœ์ดˆ ์‚ฌ์šฉ ๋“ฑ ์ดˆ๊ธฐ์— ๋งŽ์€ ๊ณตํ—Œ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜๋‚  ์ „ ์„ธ๊ณ„์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ํžŒ๋‘-์•„๋ž ์ˆซ์ž ์ฒด๊ณ„์™€ ๊ทธ ์—ฐ์‚ฐ ๊ทœ์น™์€ ์ธ๋„์—์„œ ์„œ๊ธฐ ์ฒœ๋…„ ๋™์•ˆ ๋ฐœ์ „ํ–ˆ์œผ๋ฉฐ, ์ด์Šฌ๋žŒ ์ˆ˜ํ•™์„ ํ†ตํ•ด ๋ฌดํ•จ๋งˆ๋“œ ์ด๋ธ ๋ฌด์‚ฌ ์•Œ ์ฝฐ๋ฆฌ์ฆˆ๋ฏธ์˜ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์„œ๊ตฌ ์„ธ๊ณ„๋กœ ์ „ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ์ด์Šฌ๋žŒ ์ˆ˜ํ•™์€ ์ฐจ๋ก€๋กœ ์ด๋“ค ๋ฌธ๋ช…์— ์•Œ๋ ค์ง„ ์ˆ˜ํ•™์„ ๋ฐœ์ „์‹œํ‚ค๊ณ  ํ™•์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ „ํ†ต๊ณผ ๋™์‹œ๋Œ€์— ๋ฉ•์‹œ์ฝ”์™€ ์ค‘์•™ ์•„๋ฉ”๋ฆฌ์นด์˜ ๋งˆ์•ผ ๋ฌธ๋ช…์—์„œ 0์˜ ๊ฐœ๋…์„ ๋งˆ์•ผ ์ˆซ์ž์˜ ํ‘œ์ค€ ๊ธฐํ˜ธ๋กœ ์‚ฌ์šฉํ•œ ์ˆ˜ํ•™์ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 12์„ธ๊ธฐ ์ดํ›„ ์ˆ˜ํ•™์— ๊ด€ํ•œ ๋งŽ์€ ๊ทธ๋ฆฌ์Šค์–ด์™€ ์•„๋ž์–ด ํ…์ŠคํŠธ๊ฐ€ ๋ผํ‹ด์–ด๋กœ ๋ฒˆ์—ญ๋˜์–ด ์ค‘์„ธ ์œ ๋Ÿฝ์—์„œ ์ˆ˜ํ•™์ด ๋”์šฑ ๋ฐœ์ „ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ณ ๋Œ€๋ถ€ํ„ฐ ์ค‘์„ธ๊นŒ์ง€ ์ˆ˜ํ•™์  ๋ฐœ๊ฒฌ์˜ ์‹œ๊ธฐ ์ดํ›„์—๋Š” ์ข…์ข… ์ˆ˜์„ธ๊ธฐ์— ๊ฑธ์นœ ์นจ์ฒด๊ธฐ๊ฐ€ ์ด์–ด์กŒ์Šต๋‹ˆ๋‹ค. 15์„ธ๊ธฐ ๋ฅด๋„ค์ƒ์Šค ์ดํƒˆ๋ฆฌ์•„์—์„œ ์‹œ์ž‘๋œ ์ƒˆ๋กœ์šด ์ˆ˜ํ•™์  ๋ฐœ์ „์€ ์ƒˆ๋กœ์šด ๊ณผํ•™์  ๋ฐœ๊ฒฌ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ๋น ๋ฅธ ์†๋„๋กœ ์ด๋ฃจ์–ด์กŒ๊ณ , ์ด๋Š” ์˜ค๋Š˜๋‚ ๊นŒ์ง€ ์ด์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” 17์„ธ๊ธฐ ์•„์ด์ž‘ ๋‰ดํ„ด๊ณผ ๊ณ ํŠธํ”„๋ฆฌํŠธ ๋นŒํ—ฌ๋ฆ„ ๋ผ์ดํ”„๋‹ˆ์ธ ์˜ ๋ฌดํ•œ๋Œ€ ๋ฏธ์ ๋ถ„ํ•™ ๊ฐœ๋ฐœ๊ณผ ์นผ ํ”„๋ฆฌ๋“œ๋ฆฌํžˆ ๊ฐ€์šฐ์Šค์™€ ๋ฐ์ด๋น„๋“œ ํž๋ฒ„ํŠธ ๊ฐ™์€ ๋…์ผ ์ˆ˜ํ•™์ž์˜ ๋ฐœ๊ฒฌ์— ๋”ฐ๋ฅธ ํš๊ธฐ์ ์ธ ์—…์ ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.

์ˆ˜ํ•™ ๋ถ„์•ผ Areas of mathematics

(โ€œ์ˆ˜ํ•™ ๋ถ„์•ผ Areas of Mathematicsโ€ 2025)

Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature orโ€”in modern mathematicsโ€”purely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andโ€”in case of abstraction from natureโ€”some basic properties that are considered true starting points of the theory under consideration. Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics) but often later find practical applications. Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclidโ€™s Elements. Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra and infinitesimal calculus were introduced as new fields. Since then, the interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method, which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics.

์ˆ˜ํ•™์€ ๊ฒฝํ—˜์  ๊ณผํ•™๊ณผ ์ˆ˜ํ•™ ์ž์ฒด์˜ ํ•„์š”์— ์˜ํ•ด ๊ฐœ๋ฐœ๋˜๊ณ  ์ฆ๋ช…๋œ ๋ฐฉ๋ฒ•, ์ด๋ก , ์ •๋ฆฌ๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ณ  ์ •๋ฆฌํ•˜๋Š” ํ•™๋ฌธ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ์ˆ˜ํ•™์—๋Š” ์ˆ˜๋ก (์ˆ˜์— ๋Œ€ํ•œ ํ•™๋ฌธ), ๋Œ€์ˆ˜(๊ณต์‹๊ณผ ๊ด€๋ จ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ํ•™๋ฌธ), ๊ธฐํ•˜ํ•™(๋„ํ˜•๊ณผ ์ด๋ฅผ ํฌํ•จํ•˜๋Š” ๊ณต๊ฐ„์— ๋Œ€ํ•œ ํ•™๋ฌธ), ํ•ด์„(์—ฐ์†์ ์ธ ๋ณ€ํ™”์— ๋Œ€ํ•œ ํ•™๋ฌธ), ์ง‘ํ•ฉ๋ก (ํ˜„์žฌ ๋ชจ๋“  ์ˆ˜ํ•™์˜ ๊ธฐ์ดˆ๋กœ ์‚ฌ์šฉ๋˜๋Š”) ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ž์—ฐ์—์„œ ์ถ”์ƒํ™”ํ•˜๊ฑฐ๋‚˜ ํ˜„๋Œ€ ์ˆ˜ํ•™์—์„œ๋Š” ๊ณต๋ฆฌ๋ผ๊ณ  ํ•˜๋Š” ํŠน์ • ์†์„ฑ์„ ๊ฐ–๋„๋ก ๊ทœ์ •๋œ ์ˆœ์ˆ˜ ์ถ”์ƒ ์‹ค์ฒด๋กœ ๊ตฌ์„ฑ๋œ ์ถ”์ƒ์ ์ธ ๋Œ€์ƒ์„ ๊ธฐ์ˆ ํ•˜๊ณ  ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ˆœ์ˆ˜ํ•œ ์ด์„ฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์ƒ์˜ ์†์„ฑ์„ ์ฆ๋ช…ํ•˜๋ฉฐ, ์ฆ๋ช…์€ ์ด๋ฏธ ํ™•๋ฆฝ๋œ ๊ฒฐ๊ณผ์— ์—ฐ์—ญ์  ๊ทœ์น™์„ ์—ฐ์†์ ์œผ๋กœ ์ ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์—๋Š” ์ด์ „์— ์ฆ๋ช…๋œ ์ •๋ฆฌ, ๊ณต๋ฆฌ, ๊ทธ๋ฆฌ๊ณ  ์ž์—ฐ์—์„œ ์ถ”์ƒํ™”๋œ ๊ฒฝ์šฐ ๊ณ ๋ ค ์ค‘์ธ ์ด๋ก ์˜ ์ง„์ •ํ•œ ์ถœ๋ฐœ์ ์œผ๋กœ ๊ฐ„์ฃผ๋˜๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ธฐ๋ณธ ์†์„ฑ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ์ž์—ฐ๊ณผํ•™, ๊ณตํ•™, ์˜ํ•™, ๊ธˆ์œต, ์ปดํ“จํ„ฐ ๊ณผํ•™ ๋ฐ ์‚ฌํšŒ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ์ˆ˜ํ•™์€ ํ˜„์ƒ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜์ง€๋งŒ ์ˆ˜ํ•™์˜ ๊ธฐ๋ณธ ์ง„๋ฆฌ๋Š” ์–ด๋–ค ๊ณผํ•™์  ์‹คํ—˜๊ณผ๋„ ๋ฌด๊ด€ํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„ํ•™์ด๋‚˜ ๊ฒŒ์ž„ ์ด๋ก ๊ณผ ๊ฐ™์€ ์ˆ˜ํ•™์˜ ์ผ๋ถ€ ์˜์—ญ์€ ์‘์šฉ ๋ถ„์•ผ์™€ ๋ฐ€์ ‘ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋กœ ๋ฐœ์ „ํ•˜๋ฉฐ ์‘์šฉ ์ˆ˜ํ•™์œผ๋กœ ๋ถ„๋ฅ˜๋˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์˜์—ญ์€ ์‘์šฉ ๋ถ„์•ผ์™€ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ(๋”ฐ๋ผ์„œ ์ˆœ์ˆ˜ ์ˆ˜ํ•™์ด๋ผ๊ณ ๋„ ํ•จ) ๋‚˜์ค‘์— ์‹ค์šฉ์ ์ธ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ฐพ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์—ญ์‚ฌ์ ์œผ๋กœ ์ฆ๋ช…์ด๋ผ๋Š” ๊ฐœ๋…๊ณผ ๊ทธ์™€ ๊ด€๋ จ๋œ ์ˆ˜ํ•™์  ์—„๋ฐ€์„ฑ์€ ๊ทธ๋ฆฌ์Šค ์ˆ˜ํ•™, ํŠนํžˆ ์œ ํด๋ฆฌ๋“œ ์›๋ก ์—์„œ ์ฒ˜์Œ ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™์ด ์‹œ์ž‘๋œ ์ด๋ž˜ ์ˆ˜ํ•™์€ ์ฃผ๋กœ ๊ธฐํ•˜ํ•™๊ณผ ์‚ฐ์ˆ (์ž์—ฐ์ˆ˜์™€ ๋ถ„์ˆ˜์˜ ์กฐ์ž‘)๋กœ ๋‚˜๋‰˜์—ˆ์œผ๋ฉฐ, 16~17์„ธ๊ธฐ์— ๋Œ€์ˆ˜ํ•™๊ณผ ๋ฌดํ•œ๋Œ€ ๋ฏธ์ ๋ถ„์ด ์ƒˆ๋กœ์šด ๋ถ„์•ผ๋กœ ๋„์ž…๋˜๊ธฐ ์ „๊นŒ์ง€ ์ˆ˜ํ•™์€ ์ฃผ๋กœ ๊ธฐํ•˜ํ•™๊ณผ ์‚ฐ์ˆ ๋กœ ๋‚˜๋‰˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„๋กœ ์ˆ˜ํ•™์  ํ˜์‹ ๊ณผ ๊ณผํ•™์  ๋ฐœ๊ฒฌ์˜ ์ƒํ˜ธ ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋‘ ๋ถ„์•ผ์˜ ๋ฐœ์ „์ด ์ƒ๊ด€๊ด€๊ณ„์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. 19์„ธ๊ธฐ ๋ง, ์ˆ˜ํ•™์˜ ๊ทผ๋ณธ์ ์ธ ์œ„๊ธฐ๋Š” ๊ณต๋ฆฌ์ฃผ์˜์  ๋ฐฉ๋ฒ•์˜ ์ฒด๊ณ„ํ™”๋กœ ์ด์–ด์กŒ๊ณ , ์ด๋Š” ์ˆ˜ํ•™ ์˜์—ญ๊ณผ ๊ทธ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ€๋ฅผ ์˜ˆ๊ณ ํ–ˆ์Šต๋‹ˆ๋‹ค. ํ˜„๋Œ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ ๋ถ„๋ฅ˜์—๋Š” 60๊ฐœ ์ด์ƒ์˜ 1๊ธ‰ ์ˆ˜ํ•™ ์˜์—ญ์ด ๋‚˜์—ด๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์‘์šฉ์ˆ˜ํ•™ Applied mathematics

(โ€œ์‘์šฉ์ˆ˜ํ•™ Applied Mathematicsโ€ 2025)

Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term โ€œapplied mathematicsโ€ also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models. In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics.

10.2.3 Applications of Mathematics ์ˆ˜ํ•™ ์‘์šฉ